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Statistical Modelling, Generalized Linear Models

Ezam
RULES FOR THE EXAM:

e The use of a normal, non-graphical calculator is permitted.
e This is a CLOSED-BOOK exam.
e At the end of the exam you can find a chi-squared table.

o In this exam you can use the usual significance cut-off o = 0.05.

1. Gamma regression. A study investigated the effectiveness of the “bonus-malus”
(BM) system (system that adjust the premium according to the individual’s claim
history) and the height of the insurance excess (eigen risico) on reducing the height
of the car insurance claims. Average car insurance claims per customer over a 1-
year period were recorded from nine insurance companies, each with a different
bonus-malus system (1= present, 0=absent) and with different excess levels.

Company y X1 x2
(Av. claim in 1,000 euro) BM system Excess (euro)

1 0.11 1.00 50.00
2 0.18 1.00 0.00
3 0.26 0.00 0.00
B 0.32 1.00 200.00
5 0.46 1.00 50.00
6 0.93 0.00 50.00
7 1.16 0.00 100.00
8 2.50 0.00 100.00
9 3.09 0.00 100.00

The aim is to find a relationship between the height of the car insurance claim (y)
and the explanatory variables presence/absence of bonus-malus system (z;) and
excess level (z2). This is done via a Gamma, regression.

The Gamma regression model is defined via these ingredients:
e The claims y are distributed as
y ~ Gamma(c, ),

whereby f(y) = %ya‘le”ﬁy(y > 0).



e Let ) be the linear predictor, i.e.
= Bo+ TuP1 + Tifa-

e You can use the fact that = E(Y) = a/B and V(Y) = a/B>.

e The parameters u and 7 are linked via the link function

n = g(w
e In this question consider y directly; don’t consider any transformation.

(a) Write the probability density function of y as a function of the mean f of y
(HINT: write /3 as a function of y and o). What values can p take?

(b) Show that the distribution of y comes from an exponential family. Determine
the canonical parameter § and the variance function V(i)

(¢) Determine the canonical link function g and its inverse g~'. What is the
problem with this link function?
In what follows, assume that you use the canonical link function.

(d) Show that % = g(—"’%, where [ is taken to be the log-likelihood of a single
observation y.

(e) Use the fact that the likelihood for § is given as
1(B) = log(f (v;1(5)))

to derive an expression for % for all the data y.

(f) Derive the expression for the second derivative ; ﬂéjifﬁk for all the data.
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(g) Unfortunately, there is typically no explicit solution for the system of p max-
imum likelihood equations

o
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whereby [ is the full log-likelihood and p is the number of columns of X.
Therefore, numeric methods, such as the Newton-Raphson and F isher Scor-
ing algorithm, need to be used to derive the root B of these equations. Ex-
plain, how in this particular case the Fisher Scoring algorithm differs from
the Newton-Raphson algorithm?

(h) We perform the Gamma regression in R and obtain the following results:

07

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -2.003734 0.769193 -2.605 0.0404 =
x1 -3.379783 1.126448 -3.000 0.0240 *
X2 0.015513 0.007827 1.982 0.0948 .

(Dispersion parameter for Gamma family taken to be 0.3708685)



Null deviance: 10.2367 on 8 degrees of freedom
Residual deviance: 2.0633 on 6 degrees of freedom
AIC: 10.395

Interpret the sign of the coefficient B for x1 (presence/absence of bonus-malus
system). NOTE: as stated before, we use here the strict canonical link func-
tion (i.e. with minus sign) and this should be taken into account when inter-
preting le.

(i) Test formally whether the model fits the data.

(j) We also fit the model without excess (x2) and obtain

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -0.6294 0.1906 -3.303 0.0131 =
x1 -3.1506 1.2938 -2.435 0.0451 x*

(Dispersion parameter for Gamma family taken to be 0.458458)

Null deviance: 10.2367 on 8 degrees of freedom
Residual deviance: 4.2246 on 7 degrees of freedom
AIC: 15.200

Use the AIC and the deviance test for Sy to check whether you can drop
insurance excess from the model.

2. Quasi-likelihood. The quasi-loglikelihood is defined by assuming that its deriva-
tive with respect to the mean p = EY can be written as:

Y—p

PV (1)’

where ¢ is an arbitrary scale-factor and V() the variance function. Assume that

for strictly positive data Y, we use the variance function

UlY,p) =

(a) Derive the quasi-loglikelihood @y for a single observation in this case, where
Qu(p) =[] U(y,1) dt.

(b) We observe n data-points y = (1, .- ,yn) and we would like to model the
mean fi; of y; via a linear predictor

P
= Z mijﬁj
=0

and a link function
9(us) = /-

Derive the following quantities



i. the full quasi-loglikelihood Q" (8) = i Qu: (11(:, B));
ii. the expression for its first derivative with respect to f;, %%;
J

iii. the expression for its second derivative S%ffsgla—k.
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3. Logistic regression. In a toxicity dose-response experiment, different levels
of a particular toxin were given to batches of plants. The aim is to model the
probability of survival 7 as a function of the amount of toxin z. Consider the
dose-response model

g(m) = Bo + bz,

where g is a link-function.

(a) Under the hypothesis that the response probability at dose z is equal to 7o,
show that the model reduces to

g(m) = Bo(1 — z/m0) + g(mo)z/To-
(b) How would you fit such a model using your favorite computer programme?

In your answer focus only on the intercept, the linear term and the off-set.

(c) According to the literature there is a 7o = 73% survival rate at dose g = 2.
We want to test this hypothesis and therefore perform an experiment. We
measure survival in 5 batches of 10 plants subjected to 5 dose-levels of toxin
and fit two logistic regressions in R, with the following results

glm(formula = y ~ dose, family = binomial (link = "logit"))

Coefficients:

Estimate Exp(Estimate) Std. Error z value Pr(>lzl)
(Intercept) -2.6182 0.07 0.9817 -2.667 0.007652
dose 1.4442 4.24 0.4267 3.384 0.000713

Residual deviance: 1.5886 on 3 degrees of freedom

T1.dose<-1-dose/2
T2.dose<-log(.73/.27)*dose/2

glm(formula=y~-1+T1.dose, family=binomial (link="logit"), offset=T2.dose)

Coefficients:
Estimate Std. Error z value Pr(>lzl)
T1i.dose -2.0100 0.9854 -2.04 0.0414 *

Residual deviance: 4.6368 on 4 degrees of freedom

Use this output to test the hypothesis Hy : m(z = 2) =0.73.



4. Poisson regression and contingency tables. In a study 91 couples in Tucson,
Arizona, answered the question:

“Sex is fun for me and my partner.”

The possible answers were “never or occasionally”, “fairly often”, “very often” and

“almost always”. The data are summarized in the table below. We perform two
Poisson regression on the frequencies and find the following results when fitting
two models.

never fairly very always

never 7.00 7.00 2.00 3.00
fairly  2.00 8.00 3.00 7.00
very 1.00 5.00 4.00 9.00
always  2.00 8.00 9.00 14.00

NOTE: The factor symfac is the factor that models a symmetric response, i.e., if ay; is the coefficient

corresponding to the symfac factor (i=husband, j=wife), then oi; = .

glm(formula = y ~ symfac, family = poisson, data = sexfun)

Coefficients:

Estimate Std. Error z value Pr(>lzl)
(Intercept) 2.6391 0.2673 9.874 < 2e-16 *%x
symfac:always-fairly -0.6242 0.3716 -1.680 0.093038 .
symfac:always—never  -1.7228 0.5210 =-3.307 0.000944 *x*x*
symfac:always-very -0.4418 0.3563 -1.240 0.215016
symfac:fairly-fairly -0.5596 0.4432 -1.263 0.206710
symfac:fairly-never  -1.1350 0.4272 -2.657 0.007894 *x
symfac:fairly-very -1.25628 0.4432 -2.827 0.004704 x*x
symfac:never-never -0.6931 0.4629 -1.497 0.134297
symfac:never-very -2.2336 0.6362 -3.511 0.000447 ***
symfac:very-very -1.2528 0.5669 -2.210 0.027128 *

Null deviance: 33.5846 on 15 degrees of freedom
Residual deviance: 4.0552 on 6 degrees of freedom

glm(formula = y ~ symfac + husband + wife, family = poisson, data = sexfun)

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) 3.3686 0.6449  5.223 1.76e-07 x*x
symfac:always-fairly -0.4829 0.4116 -1.173 0.240723
symfac:always-never  -2.1526 0.6544 -3.289 0.001004 **
symfac:always-very -0.4716 0.4121 -1.144 0.252474
symfac:fairly-fairly -0.2539 0.6088 -0.417 0.676684



symfac:fairly-never -1.4753 0.6479 -2.277 0.022778 *
symfac:fairly-very -1.1458 0.5563 -2.060 0.039436 *
symfac:never-never -1.4227 0.7475 -1.903 0.057012 .
symfac:never-very -2.6829 0.7750 -3.462 0.000536 *x*x
symfac:very-very -1.3115 0.6952 -1.887 0.059216 .
husband:fairly -1.0353 0.5694 -1.818 0.069037 .
husband:very -0.6708 0.6230 -1.077 0.281608
husband:always -0.7295 0.5869 -1.243 0.213881

Null deviance: 33.58461 on 15 degrees of freedom
Residual deviance: 0.36600 on 3 degrees of freedom

Assuming that these two models are the only relevant models in this example
(i.e. no simpler model is better than these two models), then answer the following
questions.

(a) What are the two types of models that have been fitted above?

(b) Test whether marginal homogeneity holds for these data.

S TR AR
df XGos  Xoos
1 0.00 3.84

2 010 5.99
3 035 7.81
4 071 949
5 115 11.07
6 1.64 12.59

Table 1: Quantile of a chi-squared ng with df degrees of freedom.



